Introducción

La dinámica sedimentaria del Golfo de Cádiz ha sido considerada en los sec- tores profundos del margen continental, en relación tanto con los procesos sedi- mentarios generados por la interacción de la masa de agua mediterránea que proviene del estrecho de Gibraltar (MOW) con la topografía del fondo del talud y cuenca profunda (Heezen & Johnson, 1969; Kenyon & Belderson, 1973; Madelain, 1970; Meliès, 1974; Baraza & Nelson, 1992), así como por la dinámica general de la materia en suspensión (Pulinx & et al., 1987). Son escasos los trabajos que consideran los aspectos dinámicos sobre la plata- forma continental y áreas costeras (Maibosone, 1963; Segado et al., 1982; Gutierrez Mas, 1992).

El presente trabajo constituye un avance de los estudios sedimentarios re- alizados en la plataforma continental septentrional del golfo de Cádiz, en un tramo comprendido entre la desembocadura del Guadalquivir y el Cabo de Trafalgar (Fig. 1 A y B). Se plantea un

Fig. 1.— A) Encuadre geográfico general del área. B) Esquema geográfico y batimétrico del tramo estudiado de la plataforma continental del Golfo de Cádiz. 
Situción del perfil sísmico de la Fig. 2. C) 
Mapa de distribución de facies granulométricas (adaptado de Gutierrez Mas, 1992). 1.- Fango, 2.- arenas, 3.- arena fangosa, 4.- fango arenoso, y 5) gravas.

Fig.1.— A) General location of study area. B) Geographical and batimetrical skect of study area of Cádiz Gulf Continental Shelf. 
High resolution seismic profile situation of Fig.2. C) Map showing the granulometric facies distribution (Gutierrez Mas, 1992), 
1.- mud, 2.- sand, 3.- muddy sand, 4.- sandy mud, 5.- gravel.
modelo evolutivo de la dinámica sedimentaria reciente en base a los resultados obtenidos de los análisis granulométricos de muestras superficiales de sedimentos, complementado con los resultados del estudio de registros de sísmica de alta resolución (3.5 kHz y Uniboom) existentes (IGME, 1973; Acosta, 1984; Gutierrez-Mas, 1992). En dicho tramo la plataforma continental posee unos 50 km de ancho, con una ruptura de pendiente a los 200 m, si bien es posible determinar un claro incremento del gradiente de la pendiente a partir de los 100 m. Se encuentra afectada por la dinámica de la corriente de agua superficial Noratlántica (NASW), que genera junto con la deriva por oleaje un movimiento hacia el E/SE, favorecido por la orientación estructural de la costa y del margen continental, de cara a las corrientes y temporales de poniente (W). La masa de agua mediterránea intermedia (MOW) al salir del Estrecho de Gibraltar continua el contorno del talud (Madelain, 1970), sin llegar a afectar a este tramo de la plataforma continental (Gutierrez-Mas, 1992).

La sedimentación actual en la plataforma continental. Dinámica, procesos y ambientes sedimentarios

La sedimentación actual en la plataforma continental del Golfo de Cádiz es siliciclastica (Segado et al., 1982). Los análisis granulométricos realizados sobre 180 muestras de sedimentos superficiales ha permitido determinar tres grandes sectores (Fig. 1C): 1) una franja litoral con sedimentos de tamaño de arena media a gruesa; 2) un sector septentrional con depósitos limo-arcillosos, con menos del 2% de arena y que se extiende lateralmente desde la desembocadura del Río Guadalquivir hasta el talud superior, mientras que hacia el sur alcanza algo más del paralelo de Cádiz; y 3) un tercer sector meridional en el cual predominan las arenas y arenas-limosas bioclasticas. De la distribución de facies granulométricas se deduce una dinámica sedimentaria sobre la plataforma continental hacia el SE, con cierto grado de paralelismo a la costa (Fig. 1C).

El método de Visher (1969), relaciona segmentos lineales de las curvas de frecuencias acumuladas en representación probabilística, con poblaciones granulométricas cuyos caracteres están en relación con la dinámica de transpor-
La sedimentación del Pleistoceno terminal-Holoceno

La sedimentación reciente, se ha determinado mediante la interpretación de registros sísmicos de alta resolución (IGME, 1973; Acosta, 1984; Gutiérrez Mas, 1992), correlacionándose los principales hechos morfológicos y sedimentarios con los principales eventos eustápicos (Aloisi, 1986; Hernández-Molina et al., 1992). Se han determinado tres cortezos sedimentarios:

A) La existencia de una superficie regional de erosión, así como la incisión y relleno de canales fluviales es atribuida según el modelo conceptual de Vail et al. (1991) a un cortejo de bajo nivel del mar (Lowstand Systems Tract, LST).

B) La presencia de parasecuencia retrogradacionales generadas sobre una superficie transgresiva de erosión, permiten determinar un cortejo sedimentario transgresivo (Transgressive Systems Tract, TST). Las unidades retrogradacionales se presentan el los registros de 3.5 kHz, como unidades sísmicas poco transparentes de morfología lobulada (Fig.2), que si bien se presentan con una gran potencia en los sectores próximos a la desembocadura del Río Guadalquivir, disminuyen su potencia e incluso pueden llegar a desaparecer en los sectores más meridionales, dando paso lateralmente a terrazas y acantilados submarinos (Gutiérrez Mas, 1992).

C) El cortejo sedimentario de alto nivel del mar (Highstand Systems Tract, HST), presenta clinoformas sigmoidales
La distribución actual de las facies granolométricas refleja un sector meridional, caracterizado por las arenas bioclasticas transgresivas y un sector septentrional con sedimentos prodeltaicos migrado en dirección SE. Tanto la distribución horizontal de los depósitos que constituyen la cuña sedimentaria Holocena desarrollada durante el intervalo de HST, así como la distribución actual de los sedimentos superficiales, ponen de manifiesto la persistencia del sistema dinámico de corrientes, al menos en los últimos 6.000 años. La ausencia de depósitos fangosos (limo-arcilla) en el sector meridional de la plataforma se debe a que por una parte las arenas bioclasticas no han sido aún recubiertas por los sedimentos prodeltaicos, y por otra a que el Río Guadalete, único río de cierta entidad, debió de dejar la mayor parte de sus aportes en las zonas interiores de la bahía de Cádiz donde desemboca, constituyendo un amplio estuario al abrigo de los temporales y las corrientes (Gavala, 1959; Mabesoone, 1963).

Conclusiones

La evolución de la dinámica sedimentaria durante el Pleistoceno terminal-Holoceno y la distribución actual de las facies granolométricas, de la plataforma continental del Golfo de Cádiz en el sector estudiado, está caracterizado por el desarrollo durante el TST de parasecuencias retrogradantes en relación con fases de stillstand, y de una superficie transgresiva de erosión constituida por arenas bioclasticas. Durante el HST se genera una cuña sedimentaria que proviene de la desembocadura del Río Guadalquivir, y que es descartada por la acción de la corriente NASW hacia el SE, progradando sobre las arenas transgresivas previas (Fig.3). Este esquema dinámico queda reflejado en la distribución actual de facies granolométricas, que presenta dos grandes sectores (Fig.3): uno septentrional con facies finas (fango) prodeltaicas y otro meridional con arenas arenosas y arenoso-limo-sas atribuibles a medios litorales de alta energía.

Referencias