El Terciario de la unidad de Saaden ("Dorsal" externa, Rif Septentrional, Marruecos)

The Tertiary of the Saaden unit (External "Limestone Chain", Northern Rif, Morocco)

A. Maate (**), A. Martin-Algarra (***) y F. Serrano (***)

(*) Département de Géologie, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 Tetuán, Marruecos.
(**) Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, España.
(***) Departamento de Geología y Ecología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, España.

ABSTRACT

In the Saaden unit (External "Limestone Chain", northern Internal Rif), the uppermost Eocene and the Oligocene have been dated by planktonic foraminifera. It confirms that an important transgression accounted during the Upper Eocene in this unit, and allow to demonstrate that sedimentation was continuous up to the Late Oligocene and, also probably, to the Aquitanian.

Key words: Upper Eocene, Oligocene, Internal Zones, Rif.

Geogaceta, 14 (1993), 91-93
ISSN: 0213683X

Introducción

La unidad de Saaden pertenece a la "Dorsal" externa del Rif septentrional (Fig. 1). Es una unidad equivalente a los Rondaídes béticos (Didon et al., 1973). La unidad de Saaden fue definida y estudiada por Nold et al., (1981) a partir de datos de Griffon (1966). Su serie estratigráfica está compuesta por: a) una formación dolomítica masiva del Trías superior-Lías basal; b) unas calizas con sfex del Sinemuriense-Pliensbachiense; y c) unas potentes formaciones terciarias transgresivas, que constituyen una sucesión bastante completa del Eocene superior-Oligoceno-Mioceno inferior.

El estudio detallado del Terciario de ésta y de otras unidades del Rif Interno está aún por hacer. Su interés es grande si se tiene en cuenta que durante esta época se estructuran las Zonas Internas bético-rifeñas (Martín-Algarra, 1987). El objetivo de esta nota es dar a conocer los resultados preliminares del estudio lito y bioestratigráfico de un corte en el Terciario de la Unidad de Saaden y plantear su significado a la hora de interpretar la evolución terciaria de las Zonas Internas del Rif.

Descripción del corte de las facies

El corte estudiado (Fig. 2) ha sido levantado a lo largo de la trinchera de la pista que sube al repetidor de Tetuán, al ENE de Ben Aissa (x= 501,7; y= 543,35, hoy 1/50.000 de Souk Larbía de Beni Hessane). De abajo arriba pueden distinguirse tres tramos.

El Terciario empieza por un paquete de brechas calcáreas, de unos 40 m de espesor, que reposan en discordancia cartográfica sobre unas calizas con sfex del Sinemuriense-Pliensbachiense que, a su vez, descansan sobre dolomías masivas del Trías superior-Lías basal. Los clastos de las brechas, que se hacen más pequeños hacia arriba, derivan de formaciones mesozóicas carbonatadas y con sfex, de características equivalentes a las de los materiales infrayacentes. La matriz es escasa, de naturaleza calcarenítica, localmente bioclastica, y la estratificación apenas reconocible, sólo por la presencia de dos intercacias delgadas de margas amarillentas. El depósito de las brechas parece haber acontecido en masa, por procesos de resedimentación por gravedad, posiblemente en una zona de fuerte pendiente, no alcanzada por relieve calcáreos relativamente escarpados y en curso de erosión.

El segundo tramo, de aproximadamente 100 m de espesor, está formado por una alternancia de margas con brechas y microbrechas. Las margas son cada vez más frecuentes hacia arriba, al tiempo que los niveles de brechas se hacen cada vez más delgados. Las margas, de colores claros amarillentos y anaranjados, rosados hacia arriba, son limosas y/o finamente arenosas, con una cierta proporción de cuarzo terrigéneo algo an-
También son frecuentes las formas del grupo de Globorotalia cerroazulensis (Cole), que llegan a alcanzar la morfológia de G. cocaensis Cushman sin que se haya observado G. cunialensis Touch-makine y Bolli. Esta asociación es característica de la zona P.15 de Blow (1979), equivalente a la zona de Globigerinatheka seminulvata de Tour-makine y Luterbacher (1985), y permite datar la parte baja del Eoceno superior.

Las capas más bajas del segundo tramo han suministrado una asociación exenta de Globigerinatheka y de otras formas características del Eoceno. Excepción de un ejemplar de G. cunialensis, lo que podría indicar que se depositaron en la parte más alta del Eoceno superior, pero la presencia de escasos ejemplares resedimentados de Acarina y Morozovella no nos permite asegurar que el mencionado ejemplar no esté también resedimentado. Por otra parte, la presencia de Cassigerinella chiquilensis (Cushman y Panton) parece indicar una edad oligoceno. El resto de los organismos presentes son compatibles con ambas edades. En todo caso, la edad de estas capas debe ser muy próxima a la cima Oligo-Oligoceno.

Las asociaciones encontradas en las sucesivas muestras tomadas a través del segundo tramo indican que su depósito se produjo a lo largo del oligoceno. Así, el intervalo entre la muestra 3 –que contiene Globigerina sellii (Borsetti) y Neogloboquadrina opima (Bolli)– y la muestra 7-última con Globigerina ampliapertura Bolli– se habría depositado durante la parte media del oligoceno. Las muestras superiores contienen asociaciones poco determinativas, aunque la persistencia del grupo de G. eocaena Gumbel y la ausencia de formas características del mioceno inferior (G. primdoris, T. kugleri, G. dehiscens...) parece indicar que la parte alta del segundo tramo aún pertenece al oligoceno.

**Implicaciones paleográficas**

El estudio del Terciario de la Unidad de Saaden en el corte descrito, nos permite confirmar que la transgresión Terciaria en esta unidad acabó en el Eoceno superior (Griffon, 1966). Independientemente de la variación eustática, la transgresión debió estar relacionada con un rápido hundimiento del área de depósito y con la formación de relieves próximos que se refleja en la llegada masiva de material clástico y en el predominio neto de la microfauna planctónica en los depósitos margosos. Los relieves próximos debieron estar constituidos mayoritariamente por rocas mesozóicas, cuyas características litológicas y estratigráficas serían equivalentes a las del sustrato de los materiales terciarios estudia. No obstante, también debieron existir sedimentos más modernos que suministraron los microfósiles resedimentados. Todos estos materiales posiblemente derivaron de otras unidades teutónicas yacientes, también pertenecientes a la "Dorsal" externa rifeña, la cual debió ser afectada en su conjunto por una fase de deformación hacia el final del Eoceno medio, que es responsable de la discordancia existente bajo los materiales terciarios. De hecho, un cambio sedimentario mayor afectó no sólo a la "Dorsal" Extrema rifeña, sino a diferentes dominios paleogeográficos de las Zonas Internas bético-rifeñas (Ronda- des, Maláguidas-Comáradas) que, de constituir ambientes sedimentarios supraliméticos, principalmente pelágicos y prácticamente sin depósito desde el Jurásico medio hasta el Eoceno medio.
pasaron bruscamente a recibir cantidades importantes de sedimentos clásticos a partir del Eoceno superior.

Desde entonces, los terrenos actualmente asignados a la unidad de Saaden constituyeron un área depresión donde se acumularon sedimentos. La sedimentación fue continua hasta, al menos, el Oligoceno superior y posiblemente se adentró ampliamente en el Aquitaniense, bajo facies areniscosas parcialmente turbidíticas. Este área constituiría un depocentro persistente en el tiempo, posiblemente ubicado sobre un complejo de unidades en proceso de escaramuza y transporte tectónico hacia el exterior de la cadena (piggyback basin).

La estructuración inicial de esta cuenca ocurrió en el Eoceno superior y estuvo seguida de un proceso de atenuación progresiva de la inestabilidad tectónica sinesismentaria. En dicha cuenca, el transporte y depósito de los sedimentos gruesos desde los relieve adyacentes tuvo lugar por procesos de flujos en masa gravitacionales, mientras que las margas más o menos limosas y fosilíferas representaban la sedimentación hemiespélaga normal. La alternancia de margas con brechas y microbrechas durante el Oligoceno y la disminución de las brechas hacia arriba en la secuencia, ponen de manifiesto la alternancia rítmica de episodios hemipelágicos posiblemente de lenta velocidad de sedimentación y que representan el depósito normal de la cuenca (margas), y de sedimentos acústico catastrófico, muy rápidos, producto de la denudación de relieve adyacentes (brechas y microbrechas), en un contexto de disminución progresiva de la inestabilidad tectónica sinesismentaria. Sin embargo, a partir del Oligoceno superior se detecta un cambio importante en la sedimentación, al pasar los aportes a hacerse mayoritariamente siliciclásticos y de carácter fluvial (turbiditas). Ello su-

Fig. 3.— Contenido microfósil de las muestras estudiadas.

Fig. 3.— Microfossil content of studied samples.

Referencias


