La extensión Sin-Colisional en la Zona Centro Ibérica: restricciones temporales impuestas por edades U-Pb en monacitas del sector de Somosierra, Sistema Central Español

Variscan Syn-Colisional extension in the Central Iberian zone: time constraints imposed by U-Pb monazite ages from the Somosierra sector, Spanish Central System

P. Valverde-Vaquero (*), G. Dunning (*), P. P. Hernández Huerta (**) J. Escuder Viruete (***) y R. Rodríguez Fernández (****)

(*) Departamento de Earth Sciences, Memorial University, St. John’s, NF, A1B 3X5, Canada.
(**) INTEFA, General Díaz Porlier, 48-61, 28001, Madrid, Spain.
(***I) Instituto Tecnológico y Geominero de España. Ríos Rosas 23, 28003, Madrid, Spain.

ABSTRACT

A new integrated analysis of microstructural, metamorphic and U-Pb monazite age data, indicates that the Berzosa-Riaza shear zone (BRSZ) is a major D2 extensional structure associated with crustal-scale ductile extensional shearing and important decompression. Textural relationships and U-Pb dating of monazite in rocks of several structural levels of Somosierra sector, establish that the main D2 extensional event took place in between 337±2 to 326±3 Ma (Early to Mid). This event was associated with the major extensional collapse of the Variscan interland (Central Iberian Zone) and was contemporaneous with the earliest thrusting in the foreland (Cantabrian Zone).

Key words: Textural relationships, U-Pb monazite ages, syn-collisional extension, Iberian Massif

Geocaceta, 20 (4) (1996), 883-886
ISSN: 0213683X

Introducción

En este trabajo se presentan parte de los resultados geocronológicos obtenidos en el marco del proyecto MAGNA realizado re- cientemente en el sector de Somosierra del Sistema Central Español (SCE). Los datos estructurales, estratigráficos y metamórficos complementarios están recogidos en Hernández Huerta et al. y Escuder Viruete et al., en este volumen.

El basamento hercínico del Sistema Central pertenece a la Zona Centro Ibérica (ZCI) y se caracteriza por una deformación polifásica, metamorfismo de bajo a alto grado, incluyendo complejos migmatíticos, y un extenso plutonismo granítico. Localizada en este sector, la Zona de Cizalla de Berzosa-Riaza (ZCBR), constituye una estructura de gran escala caracterizada por una intensa deformación dúctil, que separa la clásica secuencia metamórfica barroviense del dominio del Guadarrama oriental de las rocas de baja-Pa/Alta-T y alto grado del dominio occidental (Macaya et al., 1991). Ambos dominios fueron afectados por eventos tectonométamórficos principales, D1 y D2. El D1 fue compressional, relacionándose con la formación de pliegues verticales al E y NE, cabalgamientos dúciles y la blastesis de asociaciones minerales barrovienses, o metamorfismo M1, bien representadas hacia los niveles basales del dominio oriental (Areñas et al., 1980; Casquet, 1986). El D2 fue extensional y produjo una zona de cizalla dúctil de gran escala (ZCBR; Fig. 1), cuyo movimiento fue responsable de la superposición de un metamorfismo M2 de baja-Pa/Alta-T sobre las asociaciones barrovienses previas, especialmente en el dominio de alto grado oc- cidental y justo en la base del oriental. La deformación D2 tardía se concentró en una serie de «detachements» normales de bajo grado, como el de Montejo y el del Cervi- nal, los cuales recortaron parcialmente la estructura D2 produciendo discontinuidades metamórficas. Los datos geocronológicos previos de Wildberg et al. (1989) sugieren, en base a las edades U-Pb definidas por fracciones de zircon con interseccio- nes inferiores muy discordantes y monazitas, que el metamorfismo barroviense M1 tuvo lugar hace 380 Ma y la superposición de baja-Pa/Alta-T M2 a los 290 Ma.

El estudio geocronológico se planteó como respuesta a dos cuestiones principales: (1) ¿son el metamorfismo barroviense y el de baja-Pa/Alta-T dos eventos distintos separados en el tiempo?; y (2) ¿es posible proporcionar un control temporal en el des- arrollar de la ZCBR y, por lo tanto, del evento D2?. Se utilizó la datación U-Pb de monacitas debido a que este mineral crece durante el metamorfismo y posee una elevada temperatura de cierre (Te≈650°C; Copeland et al., 1988; Parrish, 1990; Heaman y Parrish, 1991; Kingsbury et al., 1993). Kingsbury et al. (1993) ha demostrado que la monocristal crece como un mineral meta- morfico en la transición cloritoide-estaurolita durante el metamorfismo regional. Por lo tanto, la monocristal puede ser utilizada como un termocronómetro progrado en el dominio oriental donde las temperaturas del pico térmico hayan sido menores que su Te, y para obtener la edad del pico térmico y/o la edad del enfriamiento en rocas del domi- nio occidental, donde se alcanzan tempera- turas al menos de 700°C.

Geocronología U-Pb: metodología.

Los minerales de 5-10 kg. de muestra fueron separados utilizando una mesa Wiffley y la fracción pesada mediante una malla de tamaño 70. La posterior separación selectiva de minerales pesados se realizó mediante métodos de gravedad y un se- parador magnético Franz. La separación en
Fig. 1. Mapa geológico esquemático del sector del Somosierra del Sistema Central-Español. Dominio occidental: (1) Paragneisess antemórficos y distéticos; (2) Augen-gneises y leucogneises variablmente migmatizados (protolitos: granitos con megacrístales y leucogranitos); (3) Gneises cuarzoalfesparíticos bancados, leucogneises y leucogranitos sin-D2 con granate. Dominio oriental: (4) Micasquistos preordovicianos; (5) Metavulcanitas ácidas (gneises de El Cardoso; 480 ±2 Ma); (6) Augengneises (ortogneises de Berzosa y Riazá); (7) Cuarclita Armormi-
cana (Arenig); (8) Serie Rodada (Orдовíco Medio-Superior); (9) Silúrico. (10) Mesozoicos y Cenozoicos. (11) «Detachements» extensionales del Cervunal y Montejo; (12) Cabalgamientos alpinos.

La muestra Hi-1 fue recolectada en los niveles de la transición Cld-Sta situados encima del «detachment» del Cervunal, en el Puerto de la Hiruela (Fig. 1). La asociación mineral es St+Chl+Grt+Bl+Ms+Qtz, indicativa de temperaturas para el pico térmico de 530-550°C. La Sf crece durante la transposición de la fábrica S1 durante D2, pero el crecimiento final se superpone a la fábrica S2. Las monacitas se localizan incluidas en las biotitas que definen la S2. Las dos fracciones de monacita analizadas son discordantes por encima y por debajo de la línea de concordancia, invalidando una edad preliminar de 334±2 206Pb/238U para esta roca (Valverde Vaquero et al., 1985). Sin embargo, las edades 206Pb/238U y 207Pb/235U para ambas fracciones son concordan-
tes y proporcionan una edad de crecimiento para las monacitas de 327±3 Ma (Fig. 2).

La muestra Pi-1 procede de los niveles de la zona de la Sf aflorantes en la carretera de la estación de La Pinilla, al S de Riazá (Fig. 1). La asociación mineral es St+Grt+Bl+Ms+Qtz. La fábrica S2 (Bt+Ms+Qtz) envuelve a granitos que contienen una S1 interna y presentan bordes corroídos. La Sf crece en dos estadios: uno pre-D2 y otro de sin- a post-D2. El último estadio estuvo probablemente asociado con la reacción Grt+Chl=St+Bt (570-610°C; Spear, 1993). Las inclusiones de monacita se localizan en las biotitas que definen la S2 y en las estuarolitas sin- a post-D2. El análisis de las fracciones de monacita ha proporcionado una edad de crecimiento de 330±2 Ma (Fig. 2).

La muestra I2-9 procede de la zona M1 de la Ky que se intercala entre los «detachment» de Montejo y del Cervunal (Fig. 1). La asociación mineral contiene Grt+Ky+ Sill (fibrolita) =St+Bt+Ms+P+Qtz. La Ky...
Fig. 2. Diagramas de concordancia para los datos U-Pb obtenidos en el sector del Somosierra. Los datos están recogidos en la Tabla 1 y la localización de las muestras se muestra en la Fig. 1.

Fig. 2. Concordia diagrams for U-Pb data from the Somosierra sector. Data are presented in Table 1 and the sample locations are shown on Fig. 1.

...y la St son pre-D2 y la fábrica S2 está definida por Sill+Bt. La termometría de intercambio Grt-Bt para estas rocas establece temperaturas para el pico térmico de 630±10°C (Valverde-Vaquero, datos no publicados). La monacita se reconoce como inclusiones en las biotitas que definen la S2. Las edades isotópicas 206Pb/204Pb y 207Pb/204Pb de dos fracciones de monacitas han proporcionado una edad de crecimiento de 326±3 Ma (Fig. 2).

La muestra BU-3 procede de una vena aplítica intercalada en el ortogneis de Buitrano, en la que se separaron dos fracciones de monacitas de diferente tamaño. Las de mayor tamaño (malla 70-200) son redondeadas, muestran signos de abrasión y han proporcionado una edad concordante de 337±2 Ma. Esta edad probablemente señala el pico térmico o el enfriamiento de la roca al pasar por la isotema de aproximadamente 700°C, si existió un «resetting» de las monacitas antiguas. Las monacitas aplana-...
Table 1.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Concentration</th>
<th>Measured</th>
<th>Corrected Atomic Ratios</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight [mg]</td>
<td>U [ppm]</td>
<td>Pb [ppm]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>total 206Pb</td>
<td>206Pb 207Pb</td>
<td>207Pb 207Pb</td>
</tr>
<tr>
<td>M1 -200</td>
<td>0.005*</td>
<td>6984</td>
<td>1305.7</td>
<td>36</td>
</tr>
<tr>
<td>M2 -200</td>
<td>0.047</td>
<td>66</td>
<td>1773</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

Notes:
1. *W monazite; pl. = platey; y. = yellow; eu. = euhedral; rd. = rounded; -100 (-200) = -100 (-200) mesh size; AB = air abraded; NAB = not abraded.
2. Uncertainty in sample weight +/− 0.0006 mg [2 sigma]; (*) = estimated weight.
3. Measured 206/204 ratio is corrected for fractionation and common Pb in the spike.
4. Atomic ratios corrected for fractionation and spike, 25 pg Pb lab procedure, initial common Pb (Stacey and Kramers, 1975) and 1 pg U blank.

Agradecimientos

Estos resultados geocronológicos representan parte del trabajo de Ph.D. de Valverde-Vaquero en el "Memorial Universidad" (MUN). El primer autor agradece al soporte material del MUN y del "Natural Sciences and Engineering Research Council (NSERC, Canadá), para llevar a cabo este proyecto.

Referencias

