Períodos de recurrencia de paleoterremotos en sedimentos varvados lacustres del Mioceno superior. Cuenca de Hijar (Albacete)

Earthquake recurrence intervals from lacustrine varved sediments of upper miocene age. Hijar basin (Albacete)

M.A. Rodríguez-Pascua (*), G. De Vicente (*) M.S. Ramírez Rayo (**), S. Martín Velazquez (*) y Calvo (***)

(**) Consejo de Seguridad Nuclear. Justo Galdo nº 11, 28040 MADRID
(***) Dpto. Petología y Gequímica, F. CC. Geológicas, Universidad Complutense, 28040 Madrid.

ABSTRACT

Paleoseismic imprint in lacustrine varved sediments (Upper Miocene) has been made in the Hijar Basin (External Prebético, Albacete). Mixed layers related to seismic activity have been observed in the varved sediments. These deformational structures are associated with earthquake's magnitude 3.55. Each varve may be considered as annual laminae and used to date the time among deformation structures. The average recurrence interval for these study section is 119 years (± 33 years of standard desviation) for 1189 recorded years.

Key words: paleoseismicity, seismites, mixed layers, lacustrine varved sediments, Hijar basin.

Geocacta, 20 (4) (1996), 1004-1007
ISSN: 0213683X

Introducción

Uno de los objetivos principales de la paleoseismicidad es determinar períodos de recurrencia de terremotos antes de las primeras crónicas históricas, por medio de la identificación de estructuras de deformación en sedimentos (sismitas), producidas por el efecto de terremotos (Seilacher, 1969). Los trabajos previos llevados a cabo en sedimentos lacustres varvados, para el cálculo de períodos de recurrencia de terremotos, son escasos, pudiendo destacar a Sims (1975). Este autor data de forma relativa las sismitas identificadas considerando el carácter anual de las varvas lacustres. Doig (1991) establece períodos de recurrencia de terremotos en sedimentos lacustres, pero utilizando dataciones radiométricas (C14), sin utilizar sedimentos varvados. Las cuencas neógenas lacustres del Prebético Externo en el área de Hellín presentan características sedimentarias adecuadas para realizar estudios de paleoseismicidad. Concretamente, este estudio se ha llevado a cabo en la cuenca de Hijar (Albacete) (Fig.1). Elizaga (1990) realiza un estudio petrológico en estas cuencas y menciona la presencia de sismitas en las mismas. En estas cuencas se pueden observar diferentes tipos de estructuras de

Fig. 1. Situación geográfica y geológica de la cuenca de Hijar (Prebético Externo, Albacete). Las fallas de transferencia se relacionan con el emplazamiento del sistema de cabalgamientos imbricados del Arco de Alcaraz.

Fig. 1. Geographic and geological location of Hijar Basin (External Prebetic, Albacete). Transfer faults are associated to the Alcaraz Arc imbricated thrust system emplacement.
Fig. 2. Sismitas (niveles de mezcla) de la cuenca de Hjar. A) Columna estratigráfica de detalle y cronología relativa entre eventos, B) curva acumulada de años entre eventos para el último tramo continuo, C) diagrama de barras de intervalos entre eventos y D) histograma de frecuencia para todos los eventos.

Fig. 2. Seismites (mixed layers) of the Mijar Basin. A) Detail lithostratigraphical log and relative time intervals between events, B) cumulative curve varve-count years between events from the upper part of the section, C) bar diagram for intervals between successive events, D) frequency histogram for all events.

deforrmación a todos los niveles, pero el estudio se ha centrado en las que aparecen en conjuntos metálicos de varas. Estas estructuras de origen sísmico, concretamente niveles de mezcla (Marco et al., 1994), se pueden datar de forma relativa, si consideramos la anualidad de la sedimentación varvada (cada pareja, laminita blanca-oscua, corresponde a un año de sedimentación). Por tanto, los ambientes lacustres (especialmente en aquellos en los que se ha desarrollado estratificación del cuerpo de agua) son un medio sedimentario idóneo para llevar a cabo investigaciones de paleosismicidad, y ofrecen una alternativa importante a los estudios realizados en medios fluviales, que por otra parte, han tenido un desarrollo mayor hasta el momento.

Situación geográfica y geológica

El área de estudio se sitúa en el sector surooriental de la Comunidad Autónoma de Castilla-La Mancha, en la zona Sur de la provincia de Albacete. Desde el punto de vista geológico, la cuenca de Hjar forma parte de un conjunto de cuencas neógenas lacustres localizadas en la zona de confluencia entre las cadenas Ibérica (NO-SE) y Bética (NE-SO). La Falla de Socovos-Calasparra (Fig. 1) separa los domíni- nos del Prebético Interno (al Sur) del Prebético Externo (al Norte, donde se sitúan estas cuencas), con diferentes características de las facies mesozóicas y prenedágenas. La zona de estudio se sitúa sobre el arco estructural Alcaraz-Hellín (Alvaro et al., 1975), en las que las direc- trices béticas al Oeste (SO-NE) se curvan adaptándose a las ibéricas (NO-SE).

Cuenca de Hjar

La Cuenca de Hjar se localiza entre dos fallas de transferencia, la falla de Socovos-Calasparra al Sur y la falla de Lle- tor al Norte, relacionadas con el emplaza- miento del sistema de cabalgamientos im- bricados del Arco de Alcaraz (Fig. 1). La forma de esta cuenca se asemeja a un rectángulo, con su eje mayor orientado se- gún los N10E, de unos 3,5 Km² de superficie y con un relieve sedimentario que supera los 450 m de potencia. La cuenca está limitada en sus cuatro flancos por fallas normales, dos de dirección N10E y otros N110E. Los sedimentos lacustres que la rellenan se han datado por micromamífe- ros. Los niveles inferiores son de edad Vallesien superior y en sedimentos su- periores Turolense superior (Calvo et al., 1978). La sucesión estratigráfica está completa, representando prácticamente toda su historia geológica.

Los niveles de mezcla estudiados apa- rececen a los 75 m desde el inicio de la sedi- mentación lacustre. En un nivel de varas lacustres de 87 cm de espesor (Fig. 2). Con microscopio electrónico de barrido se puede observar la diferencia composicional entre laminitas oscuras y laminitas claras. Las laminitas oscuras, ricas en materia orgánica, están constituidas por el apilamiento de esqueletos sílicos de diatomías de unas 10m. Estos esqueletos discoidales están dispuestos paralelos a la estratificación. Las laminitas claras también son ricas en diatomías (de menor tamaño que las anteriores), pero incluyen en su composición cristales de aragonito y calcita. Su ordenación es algo más cao- tica y aparecen algunas diatomías frag- mentadas y/o corridas. Cada pareja de láminas tiene una potencia aproximada de 0,3 mm.

Descripción de los niveles de mezcla

Los niveles de mezcla se generan exclusivamente en medios finamente laminados bajo una lámina de agua. Se definieron por primera vez en Marco et al., (1994) en los sedimentos varvados del
Lago Lisan (Pleistoceno) en el graben del Mar Muerto. Aparecen asociados a fallas normales sin sedimentarias de hasta 2 m de salto vertical. Marco y Agnon (1995) sugieren que los niveles de mezcla se producen por un movimiento sísmico, de magnitud 5.5 o superior, a techo de la serie sedimentaria depositada hasta el momento. La columna de agua bajo la cual se han generado estas estructuras puede medir entre 15 y 20 m, deducido a partir de las relaciones geométricas entre cuerpos sedimentarios observados en los bordes de la cuenca. Para terremotos de igual magnitud, cuanto mayor sea el espesor de la lámina de agua menor será la potencia del nivel deformado, ya que la presión hidrostática será mayor y también la resistencia a la deformación. Para este caso, la lámina de agua parece bastante constante durante la sedimentación del conjunto varvado. La gradación de la deformación observada en los niveles de mezcla, muestra el aumento de la consolidación con la profundidad. La parte superior del sedimento, sin consolidar, se fluidifica y se resedimenta después del movimiento sísmico. Laminitas inmediatamente inferiores, más consolidadas, aparecen brechificadas y fracturadas, conservando restos de la estructura planar de las varvas. Los niveles inferiores, de comportamiento plástico, se pliegan por el efecto de esfuerzos locales de cizalla entre los estratos superiores e inferiores (Fig. 3 y 4). La morfología de estos niveles plegados es muy similar a la de los «slumps», diferenciándose exclusivamente en la aparición del nivel de mezcla superior.

Fig. 3. Fotografía de afloramiento de un nivel de mezcla típico.

Fig. 3. Outcrop’s picture of a typical mixed layer.

Determinación de períodos de recurrencia de paleoterremotos

En el nivel de varvas lacustres estudiado (de 87 cm) en la Cuenca de Hijar, se han identificado un total de 12 niveles de mezcla. Considerando la anualidad de la sedimentación, podemos conocer el tiempo transcurrido entre eventos (la tasa de sedimentación medida es de 3 mm cada 10 años). A este tiempo, medido directamente entre estructuras, habrá que sumar la edad que representan las laminitas deformadas en cada nivel. Por tanto, habrá que restituir la deformación del nivel de mezcla para poder conocer su potencia real y la edad equivalente de ésta. De este modo, obtendremos el tiempo transcurrido entre eventos.

Entre el evento 2 (E2) y E0 (Fig. 2) aparece un conjunto de laminitas con su estructura laminar alterada, es decir, se observa una fuerte desagregación interna de las laminitas y variaciones de potencia, así como zonas de cizalla dúctiles (de carácter normal con saltos millimétricos). A pesar de esta desagregación, se puede observar una cierta continuidad lateral de los conjuntos laminados, ya que esta deformación se produjo in situ sin que se aprecie transporte alguno. Se han descartado
procesos de bioturbación y efectos diagenéticos. La bioturbación habría destruido la estructura del sedimento y no se han definido procesos diagenéticos que generen estas estructuras. Se observa una deformación dúctil asociada a la desgregación en estos niveles. Las laminitas parecen haber estado sometidas a una agitación más o menos continua, que ha alterado su estructura normal. Es probable que esta agitación la haya producido una actividad sísmica moderada, lo suficientemente importante como para alterar los planos de las varvas, pero no para producir la licuefacción del sedimento. Por tanto, en este nivel no se ha podido calcular la tasa de sedimentación y se desconoce la edad equivalente del mismo. Las pasadas turbidíticas que aparecen a lo largo de la columna estratigráfica se han considerado sedimentos con tasas elevadas de sedimentación, por lo que se han omitido al calcular la tasa de sedimentación entre eventos.

La media para los 10 intervalos medidos entre los 12 niveles de mezcla es de 119 años, con una desviación estándar de ±33 años. El mínimo corresponde al evento E3 con 76 años y el máximo al E4 con 176 años (Fig. 2A). Siete de estos eventos se localizan dentro de los márgenes de la desviación estándar (Fig. 2C). Representando el conjunto de los datos en un histograma de frecuencias (Fig. 2D) obtenemos una semicampana de Gauss, con una moda del 40% entre los 75 y 100 años y valores mínimos entre los 150 y 200 años. Si representamos la función acumulada entre eventos (Fig. 2B), para el último tramo contínuo de la columna de detalle, obtenemos una distribución con una pendiente prácticamente constante, lo que indica que la población se ajusta a la media. Las zonas en las que la pendiente de la curva aumenta indican periodos de recurrencia largos, mientras que cuando disminuye, indica el aumento de la actividad sísmica con respecto a la media.

Esta solución es similar a los resultados obtenidos en otras áreas, en las que se ha podido estudiar periodos de miles de años de actividad sísmica. En el estudio realizado por Ben-Menahem (1991) en la zona del Mar Muerto, en el que ha combinando paleosismicidad, arqueología, citas bíblicas, sismicidad histórica e instrumental, obtiene periodos de recurrencia de 83 años (para terremotos de magnitud 6 con una desviación estándar de 32 años para 4000 años de registro).

Conclusiones

Por medio del estudio de niveles de mezcla en sedimentos lacustres, del Prebético Externo en la cuenca de Hjar (Albacete), se han obtenido periodos de recurrencia de terremotos, para el Mioceno superior (Turoniense), de 119 años para un total de 1189 años de registro (±33 años de desviación estándar). A estas estructuras de deformación se les asocia con terremotos de magnitud 5.5 o superiores (Marco y Agnon, 1995). Los estudios de paleosismicidad desarrollados en sedimentos lacustres ofrecen una buena alternativa a los realizados en medios fluviales, sobre todo en lo referente a periodos de recurrencia, ya que permiten la datación relativa entre diferentes eventos.

Agradecimientos

Este trabajo se ha financiado con una beca del Consejo de Seguridad Nuclear y el proyecto AMB 94-0994 de la CICYT.

Referencias

