A cryptic Early Palaeozoic event in the Narcea Antiform? 40Ar/39Ar amphibole data in the Puente de Selce granitoid

¿Un evento críptico durante el Paleozoico inferior en el Antiforme del Narcea? Edades 40Ar/39Ar de anfíbol en el granitoide de Puente de Selce

(1) Departamento de Geología, Universidad de Salamanca, 37008 Salamanca. Spain. gabi@usal.es
(2) Departamento de Petrología y Geoquímica, Universidad Complutense,
(3) Instituto de Geología, Universidad Nacional Autónoma de México. Ciudad Universitaria. 04510 México, D.F.
(4) Estación Regional del Noroeste (ERNO), Instituto de Geología, Universidad Nacional Autónoma de México, Instituto de Geología, UNAM. Apartado Postal 1039. Hermosillo, Sonora 83000, México
(5) Department of Geology, Queen’s University, Kingston, Ontario, K7L 3N6 Canada
(6) Department of Earth Sciences, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G2W5, Canada

Introduction

The tectonic evolution of NW Iberia during the Early Palaeozoic is obscured by the ubiquitous Variscan deformation developed in Devonian and Carboniferous times. This Variscan deformation is recorded in the sedimentary rocks of the Cambrian to Carboniferous passive margin sequence bordering the northern margin of the Gondwana continent and deposited on a basement of Neoproterozoic-age rocks composed of clastic sedimentary rocks, volcanics and granitoids. The processes involved in the development of the long-lived passive margin are not fully understood. The purpose of this paper is to discuss the possibility of a thermal event of Early Palaeozoic age related to the development of the aforementioned margin that may be linked to widespread coeval magmatism (Valverde-Vaquero and Dunning, 2000) and deformation, (Díaz García, 2002).

The intensity of Late Palaeozoic tectono thermal activity is such that evidence of earlier Palaeozoic events may be largely obliterated and only subtle evidence might be preserved. Evidence of Early Palaeozoic tectonism is important because it helps document the rift and drift of peri-Gondwanan terranes. In order to test the hypothesis of a thermal event in Early Palaeozoic times, as suggested by illite crystallinity data from the Cantabrian Zone (Keller and Krumm, 1992, 1993), we analyzed amphiboles of the Ediacaran Puente de Selce granitoid (ca. 600 Ma., Fernández-Suárez et al., 1998) by the 40Ar/39Ar method. This granitoid is located in the basement to the Palaeozoic sequence and intrudes the Ediacaran sediments and volcanics of the Narcea Antiform at the boundary between the Cantabrian and the West Asturian Leonese Zones (Gutiérrez-Alonso, 1992, 1996; Gutiérrez-Alonso and Fernández-Suárez, 1996; Fernández-Suárez et al., 1998), (Fig. 1A). The Narcea Antiform is a broad antiformal stack culmination at the foreland-hinterland...
The ages of the granitoid emplacement and of the main D2 Variscan shear zone set the maximum and minimum time constraints on the possible ages of the amphiboles in the granitoid. On the other hand, as the deformation and illite crystallinity data from the country rocks (Gutiérrez-Alonso and Nieto, 1996) indicate low temperature (<300°C) deformation, quartz CPO (Crystallographic Preferred Orientation) studies (Fig. 2) indicate that in addition to the low temperature shear zone development (revealed by the girdle patterns in the CPO stereographic plots) there is an inherited component that has been deformed at higher temperature conditions as can be seen in the maxima centered in the Y axis (the centre of the stereonet). It is noteworthy that these maxima do not appear in the CPOs developed in the surrounding lithologies indicating that they might not have recorded such event or that this event has been obliterated during later Variscan deformation events. From this point of view, the 40Ar/39Ar dating of amphiboles which have a closing temperature of 525 ± 25 ºC (Harrison, 1981) can shed light on the possible existence of a thermal event between the intrusion and the deformation of the Puente de Selce Granitoids.

The Puente de Selce Granitoid

The Puente de Selce intrusion is composed of coarse- to medium-grained hypidiomorphic to slightly porphyritic dark coloured granodiorites and tonalites (Corretgé, 1969; Gutiérrez Alonso and Fernández-Suárez, 1996). Rare centimetre-size microgranular mafic igneous enclaves are present. These granodiorites and tonalites are composed of plagioclase, amphibole, biotite,
pyroxene, quartz and scarce K-feldspar as essential minerals, and apatite, zircon, allanite and rare epidote as main accessory minerals.

Geochemically, the Puente de Selce granitoid is formed by I-type high-K calc-alkaline tonalites and granodiorites which have evolved by fractionation of plagioclase, biotite, amphibole and apatite (Gutiérrez-Alonso and Fernández-Suárez, 1996). Major and trace element contents and variation trends are characteristic of granitoids generated in an Andean-type continental arc setting. Melting of amphibolitic rocks of andesitic composition in the lower crust at T>850°C is the most likely mechanism for the generation of these rocks (Gutiérrez-Alonso and Fernández-Suárez, 1996).

The Puente de Selce granitoid contains abundant hornblende (Fig. 3 A and B) with prismatic habit when the granitoid is not very deformed. When deformed, they have overgrowths of brown amphibole and occasionally show altered cores of possible pyroxene relics.

\(^{40}\text{Ar}/^{39}\text{Ar}\) geochronology

Amphibole concentrates were obtained from the studied sample (SELCE) collected in the road between Puente de Selce and Argancinas (Fig. 1B). The minerals were separated and concentrated by standard techniques at the Universidad Complutense, Madrid; and later selected by handpicking under a binocular microscope from fractions that ranged in size from 40 to 60 mesh. Amphibole separates were loaded into Al-foil packets and irradiated together with Hb3gr (1072 Ma) as a neutron-fluence monitor at the McMaster Nuclear Reactor (Hamilton, Ontario). \(^{40}\text{Ar}/^{39}\text{Ar}\) analyses were performed by standard laser step-heating techniques described in detail by Clark et al. (1998) at the Geochronology Research Laboratory of Queen’s University, Kingston, Ontario, Canada. The data are given in Table I and plotted in figure 4. All data have been corrected for blanks, mass discrimination, and neutron-induced interferences.

For the purposes of this paper, a plateau age is defined when the apparent ages of at least two consecutive steps, comprising a minimum of 55% of the \(^{39}\text{Ar}\) released, agree within 2\(\sigma\) error with the integrated age of the plateau segment. We further define a so-called «pseudoplateau», which follows the requirement of a plateau age, but has a \(^{39}\text{Ar}\) percentage that can be lower than 55%. Errors shown in Table I and on the age spectrum and isotope-correlation diagrams represent the analytical precision at ±2\(\sigma\).

Results and discussion

If the tectonothermal history of the Narcea region consisted of just Cadomian and Variscan events, then one would expect \(^{40}\text{Ar}/^{39}\text{Ar}\) amphibole spectra to represent Cadomian cooling ages with variable resetting to Variscan-aged
events. However, as can be seen in figure 4, despite the fact that this intrusive body is unequivocally Cadomian in age, the ⁴⁰Ar/³⁹Ar amphibole analyses record a disturbed age spectrum in which evidence for the initial cooling of the hornblende is not preserved. The highest temperature step yields a pseudoplateau «age» of 498 ± 3.92 Ma corresponding to 21% of ³⁹Ar (Fig. 4, Table I). Another pseudoplateau «age» of 418 ± 3.92 Ma from three temperature steps (= 25.4% of ³⁹Ar) can also be determined while the integrated age for the whole experiment is 439 ± 2 Ma. The ~498 Ma amphibole age (or the integrated ~439 Ma age) could be regarded as a minimum age for the cooling of the Puente de Selce granitoid, but since its intrusion age is established at 600 Ma, it can also be interpreted as the age of re-heating or deformation under amphibolite conditions. Although the exact significance of the data is unclear, they do suggest a more complicated history than previously considered, involving post-Cadomian and pre-Variscan tectonothermal activity. These age spectra may reflect the existence of a medium-high temperature event that could be related with the Early Paleozoic extension and possibly with the drift of Avalonian terranes and the opening of the Rheic ocean (Fernández-Suárez et al., 1998), future testing of such model requires further investigation using more detailed geochronology.

Conclusions

The amphibole ⁴⁰Ar/³⁹Ar ages of the Puente de Selce Ediacaran granitoid, together with structural evidence derived from the quartz CPO’s analysis suggest a tectonothermal event in Early Paleozoic times which is in accordance with coeval events recorded elsewhere in NW Iberia that might be related to the rift-drift transition during the Rheic ocean opening and undocking of Avalonian terranes. Because of the intense Variscan overprint the nature and kinematics of this event remain enigmatic.

Acknowledgements

The main ideas in this work were triggered by insightful discussions with F. Díaz García and J.M. Tubia long time ago… Financial support to GGA is from Spanish Ministerio de Educacion y Ciencia, Research Projects nºBTE2003-05128. The ⁴⁰Ar/³⁹Ar analytical work was supported in part by a Research Grant from CONACyT (833-100-T) to Mª.A. Ortega-Rivera, and by a NSERC Discovery and Major Facilities Access grants to J.K.W. Lee and J.B. Murphy. JBM would like to acknowledge the generous support of U. Salamanca during his sabbatical grants. This is a contribution to IGCP 453 and 497.

References

Harrison, T.M. (1981). Contributions to Mineralogy and Petrology, 78, 324-331